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SUMMARY

Sensory adaptation is a phenomenon in which neu-
rons are affected not only by their immediate input
but also by the sequence of preceding inputs. In vi-
sual cortex, for example, neurons shift their preferred
orientation after exposure to an oriented stimulus.
This adaptation is traditionally attributed to plas-
ticity. We show that a recurrent network generates
tuning curve shifts observed in cat and macaque
visual cortex, even when all synaptic weights and
intrinsic properties in the model are fixed. This dem-
onstrates that, in a recurrent network, adaptation on
timescales of hundreds of milliseconds does not
require plasticity. Given the ubiquity of recurrent
connections, this phenomenon likely contributes to
responses observed across cortex and shows that
plasticity cannot be inferred solely from changes in
tuning on these timescales. More broadly, our find-
ings show that recurrent connections can endow a
network with a powerful mechanism to store and
integrate recent contextual information.
INTRODUCTION

Neurons in primary visual cortex (V1) are strongly tuned to the

orientation of visual stimuli within their receptive fields (Hubel

and Wiesel, 1962). Some debate persists surrounding how neu-

rons acquire this tuning (Ferster and Miller, 2000), including the

relative influences of feedforward versus recurrent inputs

(Priebe and Ferster, 2008; Sompolinsky and Shapley, 1997).

However, it is widely accepted that initial tuning is determined

by selective pooling of inputs from the lateral geniculate nu-

cleus (LGN) and then further modified (sharpened, made

contrast invariant) by the recurrent cortico-cortical connections

that account for up to half of the inputs to V1 neurons (Chung

and Ferster, 1998).

Several studies have shown that the orientation preference of

single neurons is altered by exposure to oriented stimuli (Clifford

et al., 2001; Dragoi et al., 2000, 2002; Felsen et al., 2002; M€uller

et al., 1999; Patterson et al., 2013, 2014; Wissig and Kohn,

2012). These alterations in neural responses have been linked
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to perceptual phenomena such as the tilt after-effect (TAE),

where adaptation produces a ‘‘repulsive’’ shift in orientation

perception (i.e., perception of orientation is biased away from

that of the adaptor stimulus) (Gibson and Radner, 1937).

Remarkably, neural adaptation can be observed even when

the adapting stimulus is presented for only a fraction of a second

(Felsen et al., 2002; M€uller et al., 1999). Analogous adaptation

effects are found in all sensory brain areas and are thought

to provide a functional benefit by enhancing discriminability of

stimuli that are prevalent in the environment (Krekelberg et al.,

2006b; Kristjánsson, 2011; M€uller et al., 1999; Schlack

et al., 2007) or by increasing detectability of rare stimuli (Clifford

et al., 2001; Dragoi et al., 2002).

Crucially, adaptation and its associated benefits are

commonly thought to arise from changes in the intrinsic proper-

ties of neurons or the efficacy of synaptic inputs (Felsen et al.,

2002; Teich and Qian, 2003). Here, however, we evaluated and

confirmed an alternative explanation: that short-term adaptation

(and therefore its potential associated benefits) are emergent

properties of processing sequential stimuli within a recurrent

neural network.

We first show that a well established recurrent network model

of orientation tuning (Carandini and Ringach, 1997; Somers

et al., 1995; Teich and Qian, 2003) quantitatively captures

changes in orientation tuning curves that have previously been

observed in cat (Felsen et al., 2002) and macaque (Patterson

et al., 2013) primary visual cortex, without the need for any

changes in intrinsic properties or synaptic connectivity. Second,

we show that these adaptation effects, including the non-statio-

narity of tuning, result from slow dynamics that emerge from the

recurrent interactions among a population of fast neurons. Given

the ubiquity of recurrent connections in cortex, such slow dy-

namics and their influence on neuronal tuning are predicted to

also play a substantial role beyond primary visual cortex.
RESULTS

We studied the dynamics of a recurrent network model of orien-

tation tuning in primary visual cortex (Carandini and Ringach,

1997; Somers et al., 1995; Teich and Qian, 2003) (see Experi-

mental Procedures). The main properties and biological plausi-

bility of this model have been documented in previous studies

(Carandini and Ringach, 1997; Somers et al., 1995; Teich and

Qian, 2003). Briefly, the model consisted of a bank of V1 units,
).
commons.org/licenses/by/4.0/).
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Figure 1. Response Dynamics in a Recurrent Model of Orientation

Selectivity

(A) Thalamocortical input to each model neuron for a horizontal grating (0�; see
inset) as a function of the neurons’ preferred orientation.

(B) Intracortical connection profile for the neuron with preferred orientation 0�.
(C) Piecewise linear function that converts membrane potential to firing rate.

(D) Population response to a horizontal grating presented for 80 ms. The color

represents time.
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Figure 2. Population Dynamics Account for theMagnitude and Time

Course of Tuning Curve Shifts Found in Cat and Macaque Visual

Cortex

Grey background areas represent attractive shifts; white background repulsive

shifts.

(A) Tuning curve shifts averaged over all recorded neurons (preferred orien-

tation set to 0�) in cat V1 (Felsen et al., 2002). Error bars represent the SEM.

(B) Tuning curve shifts for the C-model neuron with preferred orientation 0�.
(C) Time course of tuning curve shifts for the cat data corresponding to (A) and

the C-model.

(D) Time course of tuning curve shifts averaged over all recorded neurons from

macaque V1 (Patterson et al., 2013) and the M-model. Error bars represent

95% confidence intervals. This figure shows that the recurrent network model

can capture the adaptation effects observed in both cat and macaque V1.
each with a different preferred stimulus orientation determined

by their weakly tuned feedforward input from a thalamic layer

(Figure 1A). Lateral connectivity for each neuron was modeled

as the difference of two von Mises functions, one representing

excitatory connections and the other inhibitory. For appropriate

parameter choices, this results in a typical ‘‘Mexican hat’’ profile

(Figure 1B). The membrane potential of each model neuron was

converted to an instantaneous firing rate using a piecewise linear

function that determined response gain (Figure 1C). Importantly,

the model parameters were fixed over time and did not imple-

ment any form of intrinsic plasticity, such as changes in synaptic

strength or response gain.

Adaptation without Plasticity
We predicted that slow timescales emerging from the attractor

dynamics of a recurrently connected network could produce

adaptation-like phenomena. We investigated this by examining

the extent to which the recurrent model could mimic previously
reported adaptation effects found in cat (Felsen et al., 2002)

and macaque (Patterson et al., 2013) primary visual cortex.

The Felsen et al. (2002) study measured tuning curves during

sequences of very brief (17–25 ms) oriented stimuli in cat V1

(see Experimental Procedures; data replotted in Figures 2A

and 2C). Their neurons showed repulsive effects on tuning

curves, such that the preferred orientation of the neuron shifted

away from the orientation of the preceding visual stimulus (the

‘‘adaptor’’). The effect was greatest for adaptor orientations on

the flanks of the tuning curves, leading to a biphasic pattern of

shifts (Figure 2A). These effects decayed rapidly with the intro-

duction of a blank interval between the adaptor and test orienta-

tion (Figure 2C). We used these experimental data, plus general

knowledge about the properties of V1 neurons, to constrain the

free parameters of themodel. Specifically, themodel parameters

had to satisfy two criteria. First, themodel had to produce V1-like

responses to oriented stimuli presented in isolation (i.e., plau-

sible peak firing rate, tuning bandwidth, and time-to-peak; see

Experimental Procedures). Second, the responses to sequential

pairs of oriented stimuli had to reproduce as closely as possible

the adaptation pattern and dynamics observed by Felsen et al.

(2002) (i.e., Figures 2A and 2C). We refer to this parametrization

as the ‘‘C-model’’ (i.e., the Cat V1 model). We found that the
Cell Reports 17, 58–68, September 27, 2016 59



A B

C D

Figure 3. Systematic Exploration of Critical Network Parameters

For each panel all model parameters except for the one on the horizontal axis

were fixed to those of the C-model. We simulated an adaptation protocol with

adapters ranging from �90� to 0� and determined the maximum shift across

adapters.

(A) Tuning curve shift as a function of the strength of intracortical connections

ðJcortexÞ.
(B) Tuning curve shift as a function of the balance between inhibition and

excitation ðrIEÞ.
(C) Tuning curve shift as a function of the tuning width of the excitatory con-

nections. The horizontal axis corresponds to the factor by which the

connection profile was broadened (stretch factor >1) or narrowed (stretch

factor <1) compared to those in the C-model (Experimental Procedures).

(D) Tuning curve shift as a function of the tuning width of the inhibitory con-

nections. The crosses show the shift observed in the C-model without any

parameter changes. This figure shows that tuning curve shifts were largest

when the intracortical connections were strong, when excitation and inhibition

were balanced (rIE close to 1), when the excitatory connectionswere narrow, or

when the inhibitory connections were broad. See also Figure S1.
C-model captured the direction, magnitude, and time course of

the tuning curve shifts in cat visual cortex (Figures 2B and 2C).

That is, it exhibited adaptation behavior that would traditionally

be held as evidence for rapid neural plasticity. In themodel, how-

ever, adaptation occurred without plasticity.

We then investigated whether the same model architecture

could also capture the tuning curve shifts reported for macaque

V1 under different experimental conditions (Patterson et al.,

2013). Patterson et al. (2013) used longer adaptation and test

stimuli (400 ms each) and found larger and longer-lasting

(�200 ms) repulsive shifts than those found in the cat. Following

the same procedures as before to determine the free model pa-

rameters, we found that recurrent network dynamics also ac-

counted for the adaptation effects in macaque visual cortex

(M-model; Figure 2D).
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Inspired by the substantial difference in magnitude and dy-

namics between the C- andM-model, we also performed awider

parameter exploration (i.e., not tailored to fit any specific exper-

imental data set; see Experimental Procedures) and found that

the model architecture could generate very large (�10�) and
long-lasting (�1 s) tuning curve shifts (see Figure S1), while still

maintaining basic tuning properties for isolated stimuli consis-

tent with recordings in V1. A comparison of the recurrent con-

nectivity between the various models suggests that the strength

of the lateral connectivity was a significant contributing factor to

the magnitude and decay time course of the adaptation dy-

namics. For example, the C-Model, in which the tuning curve

shifts decayed rapidly, had relatively weak intracortical connec-

tions, whereas the model that had large and long-lasting shifts

(‘‘slow model’’) had strong connections (Figure S1). We investi-

gated this systematically by perturbing the parameters of the

C-model and determining the size of themaximum shift attained.

Figures 3A and 3B confirm that a stronger overall strength of

lateral connectivity (increased Jcortex) increased the magnitude

of the tuning curve shifts, while an increase in the strength of in-

hibition relative to excitation (i.e., larger rIE ) decreased the size of

the tuning curve shifts. We also explored the influence of the tun-

ing of the recurrent connections (i.e., the shape of the Mexican

hat) by narrowing or broadening the weight profiles (Experi-

mental Procedures). Figure 3C shows that broader tuning of

the excitatory connections led to smaller tuning curve shifts. Fig-

ure 3D shows the equivalent result for the tuning of inhibitory

connections; broader tuning of the inhibitory connections led

to larger tuning curve shifts.

Taken together, these findings demonstrate that a network of

neurons with fast membrane time constants (t = 15 ms) can, de-

pending on the strength and shape of its recurrent connections,

produce surprisingly slow and large adaptation effects. Impor-

tantly, the responses of the model neurons to single stimuli

were brisk and compatible with experimental data (see Figure 1

and Experimental Procedures). This analysis provides a proof of

principle, the model can reproduce many experimental findings

without plasticity. Next, we use the model to unpack the network

dynamics and understand how this happens. Unless otherwise

specified, the results shown in figures were obtained with the

C-model, although qualitatively similar results follow from the

M-model.

Responses to a Single Visual Stimulus
When presented with a horizontal grating (0�), the model initially

showed a broadly distributed response across neurons with

different preferred orientations, as has been observed experi-

mentally (Benucci et al., 2009; Carandini and Ringach, 1997).

Over time, the population response increased and sharpened,

converging to a hill-like shape with a width of �32� (Figure 1D).

This steady-state response continued as long as the stimulus

was present. By construction (see Experimental Procedures),

these response dynamics are within the range observed

experimentally.

To investigate the role of recurrent connectivity on neural

response dynamics, we modified the strength of the intracortical

connections and examined responses of the unit that preferred

horizontal orientations to a single grating of that orientation. A



Time (ms)
0 40 80 120

10

20

Time (ms)

0 40 80 120

R
el

at
iv

e 
fir

in
g 

ra
te

0 40 80 120

Fi
rin

g 
ra

te
 (H

z)

0 40 80 120

2

4

6

10°
60°
90°

B

M-modelC-modelA

0
1
4

Recurrent
connectivity

strength

Figure 4. Cortical Connectivity and Stimulus History Affect

Response Dynamics

Left panels correspond to the C-model, right panels to the M-model.

(A) Peak normalized firing rate after stimulus onset shown for networks with

absent (Jcortex = 0; light gray curve), intermediate (medium gray curve), and

strong (black curve) recurrent connectivity.

(B) Response of themodel neuronwith preferred orientation 0� to the onset of a

horizontal grating (time = 0) preceded by one of three adaptor orientations: 10�

(purple), 60� (green), or 90� (red).
purely feedforward variant (recurrent inputs fixed at zero)

reached steady state after �40 ms. Recurrent variants, in

contrast, had convergence times that were substantially longer

(150%) and increased with the strength of intracortical connec-

tivity (Figure 4A, left). These effects were even stronger in the

M-model (Figure 4A, right), and the model in which the intracort-

ical connection strength was 4-fold stronger than the M-model

failed to converge entirely (black curve). Thus, response dy-

namics were not only determined by the intrinsic properties of in-

dividual neurons (which were fixed in these simulations), but also

by their connectivity.

Responses to Sequential Stimuli
To understand why tuning curves shift after recent exposure to

an oriented stimulus, we further examined single unit and popu-

lation responses to sequential pairs of gratings. The first grating

(i.e., the adaptor) was presented until the network converged. Of

key importance is what happened in the network when the stim-

ulus was then switched to a new orientation (i.e., the ‘‘test’’).

Interestingly, the network dynamics depended on the difference

in orientation between the two successive gratings. For instance,

when a 0� test grating was preceded by a nearby adaptor orien-

tation (10�), the neuron that preferred 0� gratings reached a

steady-state response 40 ms after the onset of the second

grating (Figure 4B, left, purple curve). When preceded by a

distant orientation (60� or 90�), however, the same neuron

required �50% more time to converge (Figure 4B, left, green

and red curves). The M-model had even slower dynamics (Fig-

ure 4B, right).
The response to test stimuli similar to the adaptor orientation is

nimbler because the adaptor response closely resembles that

of the test and thus gives it a head start at the beginning of the

test period. While this result is intuitive, we show below that

these interactions generate complex dynamics in the population

and bias the representation of orientation when stimuli change

rapidly.

We examined the population dynamics by simulating the pre-

sentation of pairs of gratings (adaptor/test) and by varying the

duration of both stimuli. After the onset of the test grating in

a�45�/0� pair with 80ms presentation time per grating, the pop-

ulation activity declined from its peak at �45� and gradually

shifted to reestablish itself around the neurons preferring 0� (Fig-
ure 5A). For pairs with similar orientations (�20�/0�), population
activity resembled a traveling wave shifting between the pre-

sented orientations (Figure 5C). Finally, when the pairs were

orthogonal, (�90�/0�; Figure 5D), activity collapsed around

�90� as it resurfaced around 0�. Such dynamic patterns of

network activity have been observed experimentally using

voltage sensitive dye imaging in the cat visual cortex (Benucci

et al., 2009).

Thus, for 80 ms presentations, the population exhibited com-

plex transitions from adaptor to test, but nevertheless repre-

sented orientation accurately by the end of the test period.

Crucially, however, this was not the case for shorter presentation

times because the transitions were interrupted midway. As a

consequence, the peak of the population response at the end

of the test stimulus presentation could be biased toward the neu-

rons that preferred the adaptor (Figures 5B and 5C). The size of

this bias depended on the orientation difference between the

adaptor and the test grating in a non-monotonic fashion

(compare [B–D] in Figure 5). This analysis shows that the re-

sponses of neurons in the recurrent network were not only deter-

mined by its immediate sensory input, but also by the temporal

context provided by the preceding inputs. In other words, the

recurrent network demonstrated a property commonly termed

adaptation.

To allow a direct comparison with experimental results (which

typically report tuning curves of individual neurons rather than

population responses), we simulated neural responses in a stan-

dard orientation tuning protocol (i.e., presenting test stimuli in

temporal isolation) and in an adaptation protocol in which the

test stimulus was preceded by an adaptor oriented 20� away

from horizontal (Figure 6A). In both cases, we measured the tun-

ing curve of the neuron whose nominal preferred orientation was

horizontal (0�). By definition, the tuning curve in the standard pro-

tocol had a peak at the 0� orientation (Figure 6B, gray curve). In

the adaptation paradigm, however, the presence of a hill of activ-

ity generated by the adaptor (Figure 5) resulted in, somewhat

counterintuitively, a shift of the tuning curve away from the

adaptor orientation (Figure 6B, black curve). Consistent with tun-

ing curve dynamics in primary visual cortex (Dragoi et al., 2000),

the shift in the adapted tuning curve is dominated by an

increased response to orientations in the non-adapted flank

(see Discussion). As shown in Figure 2B, the direction and

magnitude of these tuning curve shifts depended on the orienta-

tion of the adaptor, with a biphasic, repulsive pattern, consistent

with electrophysiological recordings (Felsen et al., 2002).
Cell Reports 17, 58–68, September 27, 2016 61
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tation Paradigm

Each panel shows the response to a horizontal

grating that was preceded by an adaptor orienta-

tion (color represents time after the onset of the

horizontal grating).

(A) Response to an 80 ms presentation of a stim-

ulus with orientation 0�, preceded by an 80 ms

presentation of a stimulus oriented at �45� (�45�/
0� pair). The final population response to the sec-

ond 0� stimulus (160 ms) peaks at the neuron with

preferred orientation 0�.
(B) Response to a �45�/0� pair with each grating

presented for 20 ms.

(C) Response to a 20 ms �20�/0� pair.
(D) Response to a 20 ms �90�/0� pair. The short

stimulus presentations bias the population

response for some (B and C), but not other se-

quences (D).
Mechanism
To gain insight into the principles and mechanisms underlying

tuning curve shifts, we zoomed in on the neural responses in

a specific simulated experiment. We show the results of the

M-model, but analogous results were found in all models. Our

goal is to understand how the tuning curve shifts arise from the

recurrent network dynamics. We focus on the neuron with a

preferred orientation of 0� (the 0� neuron, for short) and simulate

an adaptation paradigm with a �25� adaptor presented for

50 ms. In the M-model, this would result in a�10� repulsive shift

in the orientation tuning curve measured with 50 ms test stimuli.

This statement about the tuning curve is equivalent to the state-

ment that, averaged over the first 50ms of stimulus presentation,

a 10� test stimulus will generate a larger response than the 0� test
stimulus. How does a non-preferred stimulus generate a larger

response than the preferred stimulus?

The response of each neuron is determined by the combina-

tion of feedforward and recurrent input (Equations 1 and 2). Fig-

ure 7A shows the feedforward input to the 0� neuron (red curve)

as a function of test stimulus orientation. Of course, the largest

feedforward input to the 0� neuron occurs when the test stimulus

orientation is 0�. Without the presentation of the adaptor (dashed

green curve), the recurrent input to the 0� neuron is also largest

when the stimulus is 0�. After adaptation, however, the largest

(least inhibitory) recurrent input to the 0� neuron occurs for test

stimuli with orientations larger than 0� (solid green curve). This

implies that, following adaptation, the 0� neuron can respond

more to a 10� test than to its nominally preferred orientation of

0�, provided that the recurrent input is sufficiently strong. This

recurrent input arises from neurons within the hill of population

activity generated by the adaptor. Understanding the dynamics

of this hill of population activity is therefore critical to understand-

ing tuning curve shifts.
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Soon (15 ms) after the onset of the test

stimulus, the V1 population activitymainly

reflects the reverberating activity caused

by the adaptor (Figure 7B, blue lines).

The peak of activity is close to the neuron
whose preferred orientation matches the �25� adaptor (indi-

cated by the arrow). Consider what happens to this hill of

adaptor-related population activity 15 ms after presentation of

the 10� test. The 10� test provides its strongest feedforward drive

to the neurons on the right flank of the hill and only weak input to

the left flank of the hill (Figure 7B, right axis, red dashed line). As a

result, the total input to some neurons on the right flank rises

above threshold, while some of the neurons on the left flank

drop below threshold. This implies that the hill of activity moves

rightward. After moving to the right, its right flank receives even

more and its left flank even less feedforward input from the 10�

test. This results in further rightward movement of the hill (Fig-

ure 7C, dashed line).

The presentation of a 0� test stimulus results in a qualitatively

similar rightward movement of the hill of adaptor-related popula-

tion activity (Figure 7C, solid blue line). However, compared to

the 10� test, the 0� test provides more feedforward drive to the

center and left flank and less drive to the right flank of the hill (Fig-

ure 7B, compare red solid and dashed curve). Therefore, the hill

moves more slowly after the presentation of the 0� test (Fig-

ure 7C, solid line). Importantly, there is a substantial period dur-

ing which the hill is closer to the 0� neuron in trials with a 10� test,
than in trials with a 0� test (Figure 7C, green shaded area).

Because only spiking neurons provide recurrent input to other

neurons, all recurrent input arises from the hill of population ac-

tivity. Figure 7B shows the hill of activity 15 ms after test stimulus

onset. As explained above and shown in Figure 7C, the hill has

shifted more to the right after the 10� test than after the 0� test

(compare dashed with solid blue curve). Due to the Mexican

hat shape of the intracortical weights, neurons with preferred

orientation close to the hill receive net recurrent excitation

(above the horizontal black dashed line representing 0mV), while

those further away receive net recurrent inhibition (below the
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adaptor (arrow) induced a repulsive shift in the tuning curve.
black dashed line). Because the hill generated by the 10� test

(Figure 7B, dashed blue curve) is closer to the 0� neuron than

the hill generated by the 0� test (solid blue curve), the net recur-

rent input to the 0� neuron is larger after the presentation of the

10� test (dashed green curve) than after the presentation of the

0� test (solid green curve). This additional recurrent input from

the hill of population activity that was created by the adaptor

generates the larger response to the 10� than the 0� test stimulus

and is therefore responsible for the shift of the tuning curve.

Figure 7D shows how this process unfolds over time by look-

ing specifically at the input and output of the 0� neuron. At t =

50 ms, the adaptor (�25�) is replaced by the test (solid lines =

0� test and dashed lines = 10� test). The feedforward input to

the 0� neuron is larger for the 0� test than the 10� test (red lines).

The recurrent input, however, is larger for the 10� than the

0� stimulus (green lines). Initially this difference is small, but it

grows over time because the hill of population activity moves

rightward faster in the 10� trials than in the 0� trials (see Fig-

ure 7C). The dashed blue line shows the consequence; the neu-

ron’s response to the 10� test starts slightly lower (less feedfor-

ward input), but rapidly catches up and then overtakes the

response to the 0� test stimulus (more net recurrent excitation).

At that time, the 0� test stimulus no longer generates the largest

response; it is no longer the preferred orientation, and hence, the

tuning curve of the 0� neuron is repulsed from the �25� adaptor,
toward 10�.
This description ignores several additional changes that occur

at the same time. One important addition is that, given enough

time and a constant test stimulus, the hill of population activity

inevitably marches toward its final state in which the peak is

centered on the neuron with the preferred orientation that

matches the test stimulus. At t�135 ms (i.e., 85 ms after test

stimulus onset), the population peak is at equal distance from

the 0� neuron in the two test conditions (Figure 7C). At this

time, the recurrent excitation to the 0� neuron is equal in both

conditions (i.e., the green curves in panel D cross over). From

then onward, both the feedforward and recurrent input to the

0� neuron are maximal for the 0� stimulus, the response to the

0� stimulus becomes stronger than the response to the 10� stim-

ulus (solid blue line crosses dashed blue line), and the preferred

orientation of the 0� neuron again matches the nominal 0�.
This mechanism explains several salient experimentally

observed properties of tuning curve shifts. First, tuning curve

shifts are repulsive. The reason for this is that only test orienta-

tions to the right of 0� (i.e., the preferred orientation of the neuron

under study) move the population activity toward the 0� neuron
more and faster than the test orientation that matches the

preferred orientation. Therefore, only those stimuli can generate

more recurrent excitation to the 0� neuron, and only those orien-

tations can (temporarily) generate a larger response than the

nominally preferred orientation.

Second, this mechanism explains why the largest tuning curve

shifts are found for adapters close to the flank of the tuning

curve. This occurs because the additional recurrent drive gener-

ated by a non-preferred orientation results from the hill of popu-

lation activity moving through the 0� neuron. If the hill of activity

starts very close to the 0� neuron (i.e., after an adaptor close to

0�), the relative advantage of the 10� test compared to a

0� test is small and short-lived. If, on the other hand, the hill of ac-

tivity starts far away from the 0� neuron (i.e., after an adaptor to

the left of the flank), the population activity dynamics no longer

resemble a moving hill, but two hills that wax and wane without

traveling through the network (e.g., Figure 5D).

Finally, this mechanism also explains the role of the critical

model parameters (Figure 3). Stronger recurrent excitation in-

creases the influence of the hill of population activity. Hence, tun-

ing curve shifts are large when recurrent connections are strong

(Jcortex large; Figure 3A) and small when inhibition is strong

compared to excitation (rIE large; Figure 3B). The width of the

hill of population activity determines the difference in recurrent

excitation generated by two test stimuli; broad hills lead to small

differences, while narrow hills lead to large differences. This ex-

plains the role of the excitatory and inhibitory tuning (Figures 3C

and 3D); broader excitatory tuning (or narrower inhibitory tuning)

leads to broader hills of population activity and smaller tuning

curve shifts (see also Figure S2).

DISCUSSION

We found that recurrent network dynamics can give rise to repul-

sive shifts in tuning curves thatmimic thoseobserved experimen-

tally in adaptation studies of primary visual cortex. Specifically,

model neurons shifted their preferred orientation away from

that of an adapting stimulus for up to�1 s (Figure S1). This effect
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A Figure 7. Mechanisms

Simulation of an adaptation protocol in the

M-model. An adaptor (�25�) was presented to

the M-model for 50 ms, followed by test stimuli of

varying orientations for 125 ms.

(A) A snapshot of the feedforward and recurrent

input to the 0� neuron at t = 65 ms as a function of

test orientation.

(B) Snapshot of the population spiking activity (left

axis) and input (right axis) at t = 65 ms. The black

arrow represents the adaptor orientation. The solid

lines correspond to a trial with a 0� test stimulus,

and the dashed lines correspond to a trial with a

10� test stimulus.

(C) Time course of the peak of population activity

when the 0� (solid) or 10� (dashed) test stimulus is

presented. The green (red) shaded area shows the

period during which the 0� neuron receives more

(less) recurrent input from the 10� test than the

0� test.
(D) Time course of the response of the 0� neuron.

The conventions are as in (B). feedforward input:

FF, recurrent input: Rec, orientation of the test

stimulus: 4. For details, see main text.
was a direct consequence of an interaction between the chang-

ing sensory environment and the dynamics of the network and

not from changes in the properties of individual neurons or their

synaptic connections. In otherwords, themodel neuronsdemon-

strated adaptation without plasticity. This shows that one cannot

infer plasticity from adaptation, and that recurrent connections

can result in slow dynamics that integrate temporal context, or

stimulus history, into the neural response to ongoing input.

Dynamics versus Plasticity
By constructing amodel without plasticity, we isolated the role of

recurrent connectivity and showed how recurrent connections

contribute to adaptation. In the brain, these recurrent network

dynamics likely interact with other mechanisms that affect the

dynamic response of neurons. At the shortest timescale, this

can include the non-linear interaction among multiple stimulus

features that results in rapid gain control (Borst et al., 2005), while

at the timescale of s to min one would expect additional contri-

butions from changes in intrinsic properties of single neurons

(Sanchez-Vives et al., 2000) or the strength of synaptic connec-

tions between neurons (Yao and Dan, 2001). Nevertheless, the

model quantitatively captures a large set of previously published

experimental findings and makes testable predictions about

the relation between population activity and single neuron re-

sponses in an adaptation paradigm (Figure 7). Most importantly,

however, the model provides a conceptually unique, yet parsi-

monious, interpretation of dynamic changes in tuning.

The experimental finding of a repulsive shift in tuning following

short-term adaptation is robust across studies, species, and

recording sites (Dragoi et al., 2000, 2002; Felsen et al., 2002;

M€uller et al., 1999; Patterson et al., 2013, 2014; Wissig and

Kohn, 2012). However, the dynamics of these shifts as well as

the details of tuning curve shapes differ significantly across
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studies and sites. Because previous studies assumed all tuning

curve changes were caused by short-term plasticity, such differ-

ences could only be interpreted as resulting from differences in

plasticity across species or across recording sites. The recurrent

networkmodel, however, offers the alternative interpretation that

differences in the magnitude or time course observed experi-

mentally may be due to differences in the strengths or spatial

profiles of the recurrent connectivity.

There is ample evidence that tuning curve shifts vary across

sites in the same animal. This is implicit in the variability observed

in many studies, but Dragoi et al. (2000) also report systematic

changes in V1: repulsive shifts are larger near the pinwheels

of orientation maps than in an iso-orientation domain. Dragoi

et al. (2000) attributed these differences to a larger degree of

plasticity near pinwheels, but our model now offers the alterna-

tive interpretation that recurrent connectivity is different near pin-

wheels. For instance, stronger excitatory connections or more

broadly tuned inhibitory connections could explain the larger

tuning curve shifts (Figure 3). Given that more neurons with

different preferred orientations are available at a short cortical

distance for a neuron in a pinwheel than for a neuron in an iso-

orientation domain, we believe that this is a reasonable and

attractive alternative explanation. Connectivity differences be-

tween the sites that were sampled in the monkey compared to

those sampled in the cat could also explain the differences be-

tween the M- and C-models (rather than a true species differ-

ence). An intriguing corollary of this is that it may be possible

to invert this relationship and infer local connectivity by recording

large sets of dynamic responses to stimulus sequences.

Timescales of Adaptation
Many phenomena, at virtually any timescale, are referred to as

adaptation. We do not claim they can all be explained by the



single mechanism—recurrent network dynamics—that we

focused on here. Our claim is merely that recurrent network dy-

namics can contribute in a significant manner to sensory adap-

tation at timescales of at least several hundreds of milliseconds.

This is important because this potential contribution has not

been considered in previous work on adaptation, and because

this timescale is ecologically highly relevant given that eyemove-

ments cause entirely new input to arrive in visual cortex every few

hundred milliseconds (Ibbotson and Krekelberg, 2011).

Even though recurrent network dynamics are unlikely to affect

responses on timescales beyond s, they can nevertheless

confound the interpretation of typical long-term adaptation par-

adigms. The reason for this is that experimental paradigms that

quantify long-term adaptation typically briefly repeat the adaptor

just before the test (the so-called ‘‘top-up design’’). As a conse-

quence, such measurements of long-term adaptation (which

likely involves some kind of plasticity) may be confounded with

the more short-lived effects reported here (dynamics). This

may offer an explanation for some of the contradictory reports

found in the fMRI adaptation literature (Kar and Krekelberg,

2016; Krekelberg et al., 2006a); future studies could remove

this confound by introducing a substantial temporal delay be-

tween adaptor and test presentation.

Plausibility
As shown in previous studies, firing rate models reproducemany

of the features of more complex, spiking neuron models and

capture many of the orientation tuning properties observed in

V1 (Carandini and Ringach, 1997; Somers et al., 1995; Teich

and Qian, 2003). We focused on a firing rate model because it al-

lowed us to perform parameter optimization with an eye to repro-

ducing the specific experimental data sets obtained in cat and

macaque visual cortex. By construction (Experimental Proced-

ures), the model parameters we used resulted in neurons with

firing rates, response dynamics, and tuning curve widths that

were all within the range typically observed in the brain. More-

over, although quantitative measures of connectivity in visual

cortex are difficult to obtain, the connectivity in the model qual-

itatively matches estimates of connectivity in primary visual cor-

tex (Kaschube, 2014; Ko et al., 2011; Michalski et al., 1983;

Roerig and Chen, 2002). This too adds to the plausibility of the

model.

Nevertheless, the model is a substantial simplification of bio-

logical reality. First, neurons in the brain are either excitatory or

inhibitory, but units in our model can be both. To ensure that

the observed tuning curve shifts are not an artifact of this simpli-

fication, we also implemented a model with distinct populations

of excitatory and inhibitory units (E/I model; Ben-Yishai et al.,

1997). This model reproduced our key findings and observa-

tions, including tuning curve shifts (see Figure S3). Second, the

units in our model all have identical spatial receptive fields,

while in the brain, neurons with separate spatial receptive fields

interact. These center-surround, contextual, modulations affect

orientation tuning (Angelucci and Bressloff, 2006; Gilbert and

Wiesel, 1990; Shushruth et al., 2012), which can interact with

adaptation (Wissig and Kohn, 2012), and contribute to other

complex tuning properties (Richert et al., 2013; Schwabe et al.,

2006).
The dynamics of models with multiple populations of interact-

ing neurons, however, are substantially more complex than the

single population model studied here (Ben-Yishai et al., 1997;

Bressloff et al., 2000; Hansel and Sompolinsky, 1998; Wilson

and Cowan, 1972). By analogy with our approach for simple

adapt/test experimental protocols, it may be possible to use

the dynamic responses to more complex spatio-temporal stim-

ulus sequences to constrain the free (connectivity) parameters

in such models. This approach, integrating tailored experimental

data collection with these more complex dynamic models, may

provide deeper insight into the function of the spatio-temporal in-

teractions enabled by recurrent connectivity (Schwartz et al.,

2007).

Recurrent Networks
Many aspects of sensory processing are captured more natu-

rally in a recurrent than a feedforward network. We recently

developed a recurrent network model for the detection of mo-

tion that capitalizes on this property. Standard motion models

typically assume delay lines or postulate the existence of clas-

ses of neurons that are intrinsically slow or fast. In the recurrent

network, however, these properties emerge from the network

dynamics (Joukes et al., 2014). Other examples of the compu-

tational flexibility of recurrent networks include the selective

amplification of noisy signals (Hahnloser et al., 2002) and the

state-dependent processing of inputs (Rutishauser and Doug-

las, 2009). Our orientation model borrows principles of compu-

tation from each of these; the network dynamics lead to

temporal interactions among stimuli, which result in selective

amplification and state-dependent processing. These computa-

tions are likely to be useful beyond primary visual cortex, and

our findings, therefore, highlight the general need to consider

how recurrent connectivity imbues a network with a powerful

and potentially multipurpose ability to compute complex func-

tions of its inputs.

EXPERIMENTAL PROCEDURES

We implemented a recurrent model of orientation selectivity following the work

of Carandini and Ringach (1997), Somers et al. (1995), and Teich and Qian

(2003). The model consisted of coupled differential equations describing the

membrane potential of N orientation selective primary visual cortex neurons

(Figure 1). As a whole, the network represents a cortical hypercolumn (i.e.,

all N spatial receptive fields overlap), and all N neurons are identical except

for their preferred orientation. The preferred orientations of the N model neu-

rons were evenly distributed across all orientations (�90� to 90�), and we

labeled each model neuron based on its preferred orientation q. Each neuron

was modeled as a single passive voltage compartment, whose membrane po-

tential over time VqðtÞ obeyed the differential equation:

t
dVq

dt
+Vq =Vq

lgn +Vq
cortex ; (Equation 1)

where t is the membrane time constant, Vq
lgn the synaptic potential generated

by the thalamocortical inputs to the model neuron, and Vq
cortex is the net synap-

tic input to the neuron from its cortical neighbors (Carandini and Ringach,

1997; Teich and Qian, 2003).

The instantaneous firing rate for the neuron with preferred orientation q at

time t was calculated as:

RqðtÞ=amax
�
VqðtÞ; 0�; (Equation 2)
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where VqðtÞ is the voltage of the neuron with preferred orientation q at time t

(see Figure 1C). This results in a mean firing rate model, with a the correspond-

ing gain factor (i.e., increase in firing rate [Hz] for a 1 mV increase in the mem-

brane potential). For simplicity, the neurons have zero spontaneous firing rate,

and the membrane potential was measured relative to the spike threshold. In

other words, a positive membrane potential results in spikes, whereas a nega-

tive membrane potential reflects a modulation for the model neuron below the

spiking threshold, hence the zero on the right of Equation 2.

Our implementation is similar to the work of Carandini and Ringach (1997)

and Teich and Qian (2003), except that we used von Mises functions to repre-

sent the thalamocortical input as well as the lateral connectivity in the network.

Using this differentiable and circular function instead of the non-circular (trun-

cated) Gaussians of previous studies improved the numerical behavior of the

network and removed artifacts from the dynamics. For each model cortical

neuron with preferred orientation q, the input from LGN was a function of stim-

ulus orientation u and contrast c:

Vq
lgnðu; cÞ= cJlgnf

�
u j q; klgn

�
; (Equation 3)

where Jlgn represents the strength of the input and fðu j q; klgnÞ is the von Mises

distribution with period p, mean q, and concentration klgn (inversely related to

the width; Figure 1A):

fðx jm; kÞ= ek cosð2ðx�mÞÞ

2pI0ðkÞ : (Equation 4)

IoðkÞ is the modified Bessel function of order zero. For the results shown in the

main text, we followed previous implementations and did not incorporate

separate units to represent excitatory and inhibitory cells, but rather gave

each model neuron the ability to produce both net excitation and inhibition

(see Figure S3 for analogous results obtained in a model with separate excit-

atory and inhibitory populations).

Experimental studies have found that the probability of connection between

two orientation selective neurons is not uniform. Instead, the probability of

connection is highest for neurons with similar preferred orientation and de-

creases with increasing difference in preferred orientation (Ko et al., 2011;

Michalski et al., 1983; Roerig and Chen, 2002). Based on these findings, we

modeled both the excitatory ðEqÞ and inhibitory ðIqÞ connection profiles to

the model neuron with preferred orientation q as von Mises distributions in

orientation space (see Equation 4):

EqðfÞ= fðf j q; kEÞ (Equation 5)

IqðfÞ= fðf j q; kIÞ: (Equation 6)

When the inhibitory connection profile was (marginally) broader than the

excitatory one ðkE > kIÞ, the connection profile (FqðfÞ; Figure 1B) had the typical

Mexican hat shape:

FqðfÞ= Jcortex
�
EqðfÞ � rIE I

qðfÞ�: (Equation 7)

In this recurrent connection profile, Jcortex represents the strength of the

cortical connections and rIE the ratio of the strength of inhibition to the strength

of excitation. The width of the excitatory and inhibitory profile is determined by

the kE ; kI, but their relation with the width of the profile is not intuitive. For

instance, decreasing k increases the width, but can also increase the offset

of the profile. In the parameter exploration simulations (Figure 3), our goal

was to determine how tuning curve shifts were affected by perturbations of

intuitive measures of connectivity. Therefore, we kept kE ; kI constant and

manipulated the width by stretching (or compressing) the profiles by scaling

the ðx � mÞ coordinate of the von Mises function (i.e., ðx � mÞ/ðx � mÞ=s).
The parameter s—the stretch factor—directly represents the influence on

the width of the profile (s > 1: broadening and s <1: narrowing).

At each point in time, the membrane potential for the neuron with preferred

orientation q induced by the recurrent input is a weighted sum of the firing rates

of all neurons in the network (Equation 2):
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Vq
cortexðtÞ=

X

f

FqðfÞRfðtÞ: (Equation 8)
The model and all simulations were implemented in MATLAB and solved

numerically using ode45, an adaptive time step Runge-Kutta method. The

number of model units in the network ðNÞ was set to 256 and the stimulus

contrast c was set to 50%.

Given our main purpose of studying temporal dynamics induced by recur-

rent connectivity, and unlike previous work, we explored model responses

at every time point during the simulation as opposed to only the final steady-

state responses. This allowed a direct comparison of the simulations with

experimental data.

From Population Responses to Tuning Curves

The output of the model is the response of all neurons to a single stimulus

(Equations 1 and 2). Lining up all model neurons on the x axis according to their

preferred orientations and plotting the response of each one on the y axis, we

obtain what we call the population response (Figure 1D). Electrophysiology ex-

periments, on the other hand, typically report tuning curves of individual neu-

rons: the response of a single neuron to all possible stimulus orientations. To

obtain tuning curves for our model neurons, we simulated the population

response to a range of stimulus orientations and extracted from each of these

the response of one specific model neuron.

The tuning curves presented in Figure 6B were obtained following either a

standard or an adaptation tuning protocol (Figure 6A). Mimicking the proced-

ure in electrophysiological experiments, for the standard protocol, we pre-

sented one test orientation per trial and averaged the firing rate over the dura-

tion of the test stimulus. To preclude systematic interactions beyond the

measurements in one trial, the response of each neuron was reset to the spon-

taneous firing rate at the end of the trial (experimentally, this would correspond

to a long inter-trial interval). In the adaptation protocol, on the other hand, we

preceded each test orientation with a fixed adapting orientation (�20� for

20 ms; Figure 6A).

Parameter Estimation and Plausibility Scores

The three models considered in this paper (C-model, M-model, and slow-

model) all exhibit response properties (e.g., tuning width and time-to-peak)

that resemble those observed experimentally in V1. We first performed an

exhaustive search to find free parameters that generated single neuron re-

sponses we considered to be plausible based on the literature. For instance,

for some model parameters neurons had peak firing rates of 200 spikes per

second. Such responses are unusual in experimental recordings, hence, we

assigned low plausibility scores to models that predicted such outcomes.

An analogous scoring heuristic was applied based on single neuron’s time-

to-peak response and single neuron tuning widths.

To estimate these score functions, we fit kernel probability distributions to

histograms of experimental data, using species-specific estimates where

possible (Carandini and Ferster, 2000; DeValois et al., 1982; Gardner et al.,

1999; Schummers et al., 2007; Wissig and Kohn, 2012). When more than

one data set was available for the same experimental measure, we first

normalized and summed the histograms before fitting the kernel distribution.

The resulting distributions were then scaled to span the interval [0 1]. The

scoring functions are shown in Figure S4. To score each model, we simulated

the response to single gratings of all orientations, measured the time-to-peak,

the peak response, and the tuning width, extracted the corresponding three

scores from the three heuristic score functions, and averaged them to get a

final plausibility score between zero and one. Note that plausibility as used

here only refers to single stimulus responses, measured outside the context

of an adaptation protocol.

This exhaustive search for plausible models was limited to parameters with

the following values (minimum:stepsize:maximum): a = [4:1:13] Hz/mV; Jlgn =

[7:1:16] mV/Hz; klgn = [0.5:0.2:2.3]; Jcortex = [0.9:0.1:1.8] mV/Hz; rIE =

[1:0.02:1.18]; kE = [1.5:0.1:2.4]; kI = [1:0.1:1.9]; and t was fixed to 15 ms during

this exhaustive search. For every one of the 107 factorial combinations of these

free parameters, we scored the resulting models according to the heuristic

plausibility score and used the most plausible models (scores above 0.9) as

initial estimates for an optimization procedure. The goal of this optimization



was to find parameters that best fit a specific set of experimental data obtained

in an adaptation paradigm.

For each plausible initial guess, we determined the eight free parameters

that matched the experimental data set most closely in the least-squares

sense (fmincon in MATLAB). From this optimization, we selected the param-

eter sets with the lowest error and the highest plausibility score.

Optimization was done separately for data obtained in cat andmacaque pri-

mary visual cortex. We refer to the best-fitting model for each of these data

sets as the C-model and the M-model, respectively. The model fitting proced-

ure was robust: we found large, contiguous parts of parameter space with a

good match between the C-model and the data, as well as the M-model and

the data. The time-to-peak, peak firing rate, and tuning width were well within

the experimentally observed ranges for all model variants in the main text. The

qualitative finding that recurrent networks generated repulsive shifts in tuning

curves (Figure 6) was also robust: shifts in tuning curves were present, with

different magnitudes and time courses, for all parameter sets that resulted in

high plausibility scores.

For the C-model discussed in the main text, the eight free parameters were

optimized to match adaptation in cat visual cortex (Felsen et al., 2002). This re-

sulted in the following parameters: t = 10.8ms; a = 10.6 Hz/mV; Jlgn = 9.57mV/

Hz; klgn = 1.56; Jcortex = 1.71 mV/Hz; rIE = 1.18; kE = 1.59; and kI = 1.16. For the

M-model, which was optimized to match adaptation in anaesthetized ma-

caque visual cortex (Patterson et al., 2013), the parameters were: t = 8 ms;

a = 3.88 Hz/mV; Jlgn = 11.04 mV/Hz; klgn = 0.47; Jcortex = 2.84 mV/Hz; rIE =

1.24; kE = 1.12; and kI = 0.56.

For the model shown in Figure S1C, we fixed t to 15 ms and then performed

a random search through the remaining seven dimensional parameter space.

This search was not exhaustive; we stopped the multiday search after finding

several models with tuning curve shift time courses whose dynamics were on

the order of s. The parameters of the exemplary slowmodel in Figure S1, panel

C were: t = 15 ms; a = 4 Hz/mV; Jlgn = 8 mV/Hz; klgn = 0.5; Jcortex = 1.7 mV/Hz;

rIE = 1.14; kE = 2.2; and kI = 1, and its plausibility score was 0.4 if scored with

cat plausibility and 0.6 if scored with anaesthetized monkey plausibility.

Experimental Data

Felsen et al. (2002) used single tungsten electrodes to record from neurons in

primary visual cortex of anaesthetized cats. The grating stimuli were adjusted

to match the optimal spatial frequency and receptive field size of the neuron

under study. The stimuli were pairs or sequences of gratings in which each

grating was presented for 25 ms or 17 ms. The time between two gratings

was varied between 0 ms and 125 ms; the screen was blank during that period

of time. We extracted the tuning curve shift data from their Figure 3B (based on

the average tuning curve shift of 21 cells, reproduced here as Figure 2A). We

extracted the time courses from their Figure 4B, which has separate time

courses for 25 ms and 17 ms grating duration for a total of 20 cells. We also

redefined ‘‘interval’’ to be the time (in milliseconds) that the screen was blank

in between two oriented gratings. The model could be fit to either of these time

courses (data not shown), but for simplicity we determined a single average

time course by averaging the two curves (shown here in Figure 2C) and used

the average stimulus duration (20 ms) for model simulations. We use C-model

to refer to the best-fitting model for these data.

Patterson et al. (2013) used multielectrode arrays to record from neurons in

layers 2/3 and 4B of the parafoveal representation in primary visual cortex of

the anaesthetized macaque. The grating stimuli were adjusted to cover the

aggregate receptive field of the neurons recorded by the electrode array, their

spatial frequency was fixed at 1 cycle/�, and they drifted at 6.25 Hz. Of main

interest here were their experiments that used a brief adaptor (400 ms) fol-

lowed by a brief test (400 ms). Patterson et al. (2013) mapped the time course

of tuning curve shifts by measuring the neural response in three separate

epochs after test stimulus onset; early: 50–100 ms, mid: 100–200 ms, and

late: 200–400 ms. We extracted the time course from their Figure 5C based

on the average tuning curve shift of between 96 and 117 cells and compare

it to model results in our Figure 2D. Because our model has no visual latency,

we adjusted the time epochs to be 20–70 ms (early), 70–170 ms (mid), and

170–370 ms (late), assuming a visual latency for the data in Patterson et al.

(2013) of 30 ms. We use ‘‘M-model’’ to refer to the best-fitting model for these

data.
To simulate these experimental paradigms, we presented pairs of adapt/

test gratings to the model. To replicate the Felsen et al. (2002) data, the

adapting and test orientations were varied factorially, choosing from 12

equally distributed orientations between �90� and +90�. To replicate the Pat-

terson et al. (2013) data, the adaptor had one of 13 equally distributed orien-

tations between 15� and 75�, and the test one of 20 equally distributed

orientations between �90� and +90�. From this data set, we extracted the

tuning curves for each adaptor orientation. We also estimated tuning curves

without an adaptor. The tuning curve shift was then calculated as the differ-

ence between the orientation at the peak of the adapted and non-adapted

tuning curves.
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