2019 Publications

KPIs:  93 Journal Articles; 4 Books/ Chapters/ 2 Conference Papers


  1. Paxinos, G., Franklin, K.B.J. (2019).The Mouse Brain in Stereotaxic Coordinate. 5 ed. San Diego: Academic Press.
  2. Paxinos, G., Furlong, T., Watson, C. (2019).Human Brainstem: Cytoarchitecture, Chemoarchitecture, Myeloarchitecture. San Diego: Academic Press.

Book Chapters

  1. Jamadar, S.D. (2019). Brain circuitry in ageing and neurodegenerative disease, in Degenerative Disorders of the Brain, D.R. Hocking, J.L. Bradshaw, J. Fielding, Editors., Taylor and Francis: London. p. 1-31.
  2. Jamadar, S.D., Johnson, B. (2019). Functional magnetic resonance imaging of eye movements: Introduction to methods and basic phenomen, in Eye Movement Research, K. Klein, U. Ettinger, Editors., Springer: Switzerland. p. 503-548.

Conference Papers

  1. Forsyth, I.A., Dunston, M., Lombardi, G., et al. (2019). Evaluation of a minimally invasive endovascular neural interface for decoding motor activity. 9th International IEEE/EMBS Conference on Neural Engineering (NER), 2019: p. 750-753.
  2. Opie, N.L., John, S.E., Gerboni, G., et al. (2019). Neural stimulation with an endovascular brain-machine interface. 9th International IEEE/EMBS Conference on Neural Engineering (NER), 2019: p. 738-741.

Journal Articles

  1. Atapour, N., Majka, P., Wolkowicz, I.H., et al. (2019). Neuronal distribution across the cerebral cortex of the marmoset monkey (Callithrix jacchus). Cereb Cortex, 29(9): p. 3836-3863. 10.1093/cercor/bhy263.
  2. Autuori, E., Sedlak, P., Ridder, M., et al. (2019). rSK1 in rat neurons: A controller of membrane rSK2? Front Neural Circuit, 13: p. e21. 10.3389/fncir.2019.00021.
  3. Babaie-Janvier, T., Robinson, P.A. (2019). Neural field theory of corticothalamic attention with control systems analysis. Front Neurosci, 13: p. e1240. 10.3389/fnins.2019.01240.
  4. Belluccini, E., Zeater, N., Pietersen, A.N.J., et al. (2019). Binocular summation in marmoset lateral geniculate nucleus. Vis Neurosci, 36: p. e012. 10.1017/S0952523819000099.
  5. Berecki, G., Bryson, A., Terhag, J., et al. (2019). SCN1A gain of function in early infantile encephalopathy. Ann Neuro, 85(4): p. 514-525. 10.1002/ana.25438.
  6. Bin, Y.S., Postnova, S., Cistulli, P.A. (2019). What works for jetlag? A systematic review of non-pharmacological interventions. Sleep Med Rev, 43: p. 47-59. 10.1016/j.smrv.2018.09.005.
  7. Bock, T., Honnuraiah, S., Stuart, G.J. (2019). Paradoxical excitatory impact of SK channels on dendritic excitability. J Neurosci, 39: p. 7826-7839. 10.1523/JNEUROSCI.0105-19.2019.
  8. Chandra, A.J., Lee, S.C.S., Grünert, U. (2019). Melanopsin and calbindin immunoreactivity in the inner retina of humans and marmosets. Vis Neurosci, 36: p. e009. 10.1017/S0952523819000087.
  9. Chen, G.Z., Gong, P. (2019). Computing by modulating spontaneous cortical activity patterns as a mechanism of active visual processing. Nat Commun, 10: p. 4915. 10.1038/s41467-019-12918-8.
  10. Cloherty, S.L., Ibbotson, M.R. (2019). Contrast dependent phase sensitivity in area MT of macaque visual cortex. Neuroreport, 30(3): p. 195-201. 10.1097/WNR.0000000000001183.
  11. Connelly, W.M., Stuart, G.J. (2019). Local versus global dendritic integration. Neuron, 103: p. 173-174. 10.1016/j.neuron.2019.06.019.
  12. Deeba, F., Sanz-Leon, P., Robinson, P.A. (2019). Unified dynamics of interictal events and absence seizures. Phys Rev E, 100(2): p. 022407. 10.1103/PhysRevE.100.022407.
  13. Deerasooriya, Y., Berecki, G., Kaplan, D., et al. (2019). Estimating neuronal conductance model parameters using dynamic action potential clamp. J Neurosci Methods, 325: p. 108326. 10.1016/j.jnuemeth.2019.108326.
  14. Dell, K.L., Arabzadeh, E., Price, N.S.C. (2019). Differences in perceptual masking between humans and rats. Brain Behav, 9(9): p. e01368. 10.1002/brb3.1368.
  15. Dickinson, J., Green, R., Harkin, G., et al. (2019). A new visual illusion of aspect-ratio context. Vis Res, 165: p. 80-83. 10.1016/j.visres.2019.10.003.
  16. Eskikand, P.Z., Kameneva, T., Burkitt, A.N., et al. (2019). Pattern motion processing by MT neurons. Front Neural Circuit, 13: p. e43. 10.3389/fncir.2019.00043.
  17. Fehring, D.J., Illipparampil, R., Acevedo, N., et al. (2019). Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions. Neuropsychologia, 131: p. 148-159. 10.1016/j.neuropsychologia.2019.05.011.
  18. Fehring, D.J., Samandra, R., Rosa, M.G., et al. (2019). Negative emotional stimuli enhance conflict resolution without altering arousal. Front Hum Neurosci, 13: p. e282. 10.3389/fnhum.2019.00282.
  19. Ferdousi, M., Babaie-Janvier, T., Robinson, P.A. (2019). Nonlinear harmonic generation in the corticothalamic system. J Theor Biol, 460: p. 184-194. 10.1016/j.jtbi.2018.10.013.
  20. Filmer, H., Ehrhardt, S., Bollmann, S., et al. (2019). Accounting for individual differences in the response to tDCS with baseline levels of neurochemical excitability. Cortex, 115: p. 324-334. 10.1016/j.cortex.2019.02.012.
  21. Filmer, H., Ehrhardt, S., Shaw, T., et al. (2019). The efficacy of transcranial direct current stimilation to prefrontal areas is related to underlying cortical morphology. NeuroImage, 196: p. 41-48. 10.1016/j.neuroimage.2019.04.026.
  22. Filmer, H., Mattingley, J., Dux, P. (2019). Modulating brain activity and behaviour with tDCS: Rumours of its death have been greatly exaggerated. Cortex, 123: p. 141-151. 10.101016/j.cortex.2019.10.006.
  23. Ghodrati, M., Zavitz, E., Rosa, M.G.P., et al. (2019). Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation. Nat Commun, 10(1): p. e941. 10.1038/s41467-019-08894-8.
  24. Goulas, A., Majka, P., Rosa, M.G.P., et al. (2019). A blueprint of mammalian cortical connectomes. PLoS Biol, 17(3): p. e2005345. 10.1371/journal.pbio.2005346.
  25. Gu, Y., Qi, Y., Gong, P. (2019). Rich-club connectivity, diverse population coupling, and dynamical activity patterns emerging from local cortical circuits. PLoS Comput Biol, 15(4): p. e1006902. 10.1371/journal.pcbi.1006902.
  26. Hadjidimitrakis, K., Bakola, S., Chaplin, T.A., et al. (2019). Topographic organization of the ‘third-tier’ dorsomedial visual cortex in the macaque. J Neurosci, 39(27): p. 5311-5325. 10.1523/JNEUROSCI.0085-19.2019.
  27. Harris, A., Jacoby, O., Remington, R., et al. (2019). Taking a closer look at visual search: Just how feature-agnostic is singleton detection mode? Atten Percept Psychophys, 81(3): p. 654-665. 10.3758/s13414-018-01642-y.
  28. Hearne, L., Dean, R., Robinson, G., et al. (2019). Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis. NeuroImage: Clin 21: p. 101595. 10.1016/j.nicl.2018.11.005.
  29. Huo, B.-X., Zeater, N., Lin, M.K., et al. (2019). Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets. Eur J Neurosci, 50(12): p. 4004-4017. 10.1111/ejn.14529.
  30. Jamadar, S.D., Sforazzini, F., Raniga, P., et al. (2019). Sexual dimorphism of resting-state network connectivity in healthy ageing. J Gerontol B Psychol Sci Soc Sci, 74(7): p. 1121-1131. 10.1093/geronb/gby004.
  31. Jamadar, S.D., Ward, P.G., Li, S., et al. (2019). Simultaneous task-based BOLD-fMRI and [18-F] FDG functional PET for measurement of neuronal metabolism in the human visual cortex. NeuroImage, 189: p. 258-266. 10.1016/j.neuroimage.2019.01.003.
  32. Jamadar, S.D., Ward, P.G.D., Carey, A., et al. (2019). Radiotracer administration for high temporal resolution positron emission tomography of the human brain: Application to FDG-fPET. J Vis Exp, 152. 10.3791/60259.
  33. Kennett, J., Carter, A., Bourne, J.A., et al. (2019). A neuroethics framework for the Australian Brain Initiative. Neuron, 101(3): p. 365-369. 10.1016/j.neuron.2019.01.004.
  34. Kheradpezhouh, E., Choy, J.M.C., Arabzadeh, E., et al. (2019). Localized two-photon photoswitching of Optovin in rat cortical neurons. J Phys D Appl Phys, 52: p. 25. 10.1088/1361-6463.
  35. Kwan, W.C., Mundinano, I.C., de Souza, M.J., et al. (2019). Unravelling the subcortical and retinal circuitry of the primate inferior pulvinar. J Comp Neurol, 527: p. 558-576. 10.1002/cne.24387.
  36. Lee, C.C.Y., Clifford, C.W.G., Arabzadeh, E. (2019). Temporal cueing enhances neuronal and behavioral discrimination performance in rat whisker system. J Neurophysiol, 121(3): p. 1048-1058. 10.1152/jn.00604.2018.
  37. Lee, S.C.S., Martin, P.R., Grünert, U. (2019). Topography of neurons in the rod pathway of human retina. Invest Ophthalmol Vis Sci, 60: p. 2848-2859. 10.1167/ iovs.19-27217.
  38. Lian, Y., Grayden, D.B., Kameneva, T., et al. (2019). Toward a biologically plausible model of LGN: V1 pathways based on efficient coding. Front Neural Circuit, 13: p. e13. 10.3389/fncir.2019.00013.
  39. Liang, Y., Yong, J., Yu , Y., et al. (2019). Direct electrodynamic patterning of high-performance all metal oxide thin-film electronics. ACS Nano, 13(12): p. 13957-13964. 10.1021/acsnano.9b05715.
  40. Lin, M.K., Takahashi, Y.S., Huo, B.-X., et al. (2019). A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife, 8: p. e40042. 10.7554/eLife.40042.
  41. Lukowski, S.W., Lo, C.Y., Sharov, A.A., et al. (2019). A single-cell transcriptome atlas of the adult human retina. EMBO J, 38: p. e100811. 10.15252/embj.2018100811.
  42. MacLaurin, J.N., Robinson, P.A. (2019). Determination of brain netwwork connectivity from activity correlations. Phys Rev E, 90(1): p. 012707. 10.1103/PhysRevE.90.012707.
  43. Majka, P., Rosa, M.G.P., Bai, S., et al. (2019). Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Struct Funct, 224(1): p. 111-131. 10.1007/s00429-018-1764-4.
  44. Marcondes, M., Rosa, M.G.P., Fiorani, M., et al. (2019). Distribution of cytochrome oxidase-rich patches in human primary visual cortex. J Comp Neurol, 527(3): p. 614-624. 10.1002/cne.24435.
  45. Marek, R., Sun, Y., Sah, P. (2019). Neural circuits for a top-down control of fear and extinction. Psychopharmacology, 236(1): p. 313-320. 10.1007/s00213-018-5033-2s.
  46. Masri, R.A., Lee, S.C.S., Madigan, M.C., et al. (2019). Particle-mediated gene transfection and organotypic culture of postmortem human retina. Transl Vis Sci Techn, 8(2): p. e7. 10.1167/tvst.8.2.7
  47. Masri, R.A., Percival, K.A., Koizumi, A., et al. (2019). Survey of retinal ganglion cell morphology in marmoset. J Comp Neurol, 527: p. 236-258. 10.1002/cne.24157.
  48. McFadyen, J. (2019). Investigating the subcortical route to the amygdala across species and in disordered fear responses. J Exp Neurosci, 13: p. 1179069519846440. 10.1177/1190695.
  49. McFadyen, J., Mattingley, J., Garrido, M. (2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 16(8): p. e40766. 10.7554/eLife.40766.
  50. Menezes de Oliveira, M., Schira, M., Robinson, P.A. (2019). Feasibility of functional magnetic resonance imaging of ocular dominance and orientation preferences. PLoS Comput Biol 15(11): p. e1007418. 10.1371/journal.pcbi.1007418.
  51. Mukta, K.N., Gao, X., Robinson, P.A. (2019). Neural field theory of evoked response potentials in a spherical brain geometry. Phys Rev E, 99(6): p. 062304. 10.1103/PhysRevE.99.062304.
  52. Naoumenko, D., Gong, P. (2019). Complex dynamics of propagating waves in a two-dimensional neural field. Front Comput Neurosci, 13. 10.3389/fncom.2019.00050.
  53. Nasir-Ahmad, S., Lee, S.C.S., Martin, P.R., et al. (2019). Melanopsin-expressing ganglion cells in human retina: Morphology, distribution, and synaptic connections. J Comp Neurol, 527: p. 312-327. 10.1.10022//ccnnee.2.244117766.
  54. Oestreich, L.K.L., Randeniya, R., Garrido, M. (2019). Auditory prediction errors and auditory white matter microstructure associated with psychotic-like experiences in healthy individuals. Brain Struct Funct, 224(9): p. 3277-3289. 10.1007/s00429-019-01972-z.
  55. Pang, J., Robinson, P.A. (2019). Power spectrum of resting-state blood-oxygen-level-dependent signal. Phys Rev E, 100(2): p. 022418. 10.1103/PhysRevE.100.022418.
  56. Pawar, K., Chen, Z., Shah, N.J., et al. (2019). A deep learning framework for transforming image reconstruction into pixel classification. IEEE Access, 7: p. 177690-177702. 10.1109/ACCESS.2019.2959037.
  57. Pham, X., Wright, D.K., Atapour, N., et al. (2019). Internal subdivisions of the marmoset claustrum complex: Identification by myeloarchitectural features and high field strength imaging. Front Neuroanat, 13: p. e96. 10.3389/fnana.2019.00096.
  58. Postnova, S. (2019). Sleep modelling across physiological levels. Clocks & Sleep, 1(1): p. 166-184. 10.3390/clockssleep1010015.
  59. Poudel, G.R., Harding, I.H., Egan, G.F., et al. (2019). Network spread determines severity of degeneration and disconnection in Huntington’s disease. Hum Brain Mapp, 40(14): p. 4192-4201. 10.1002/hbm.24695.
  60. Ranjbar-Slamloo, Y., Arabzadeh, E. (2019). Diverse tuning underlies sparse activity in L2/3 vibrissal cortex of awake mice. J Physiol, 597(10): p. 2803-2817. 10.1113/JP277506.
  61. Renton, A., Mattingley, J., Painter, D. (2019). Optimising non-invasive brain-computer interface systems for free communication between naïve human participants. Sci Rep, 9: p. 18705. 10.1038/s41598-019-55166-y.
  62. Renton, A.I., Painter, D.R., Mattingley, J. (2019). Differential deployment of visual attention during interactive approach and avoidance behavior. Cereb Cortex, 29(6): p. 2366-2383. 10.1093/cercor/bhy105.
  63. Risser, L., Sadoun, A., Mescam, M., et al. (2019). In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Struct Funct, 224(5): p. 1957-1969. 10.1007/s00429-019-01869-x.
  64. Robinson, P.A. (2019). Neural field theory of effects of brain modifications and lesions on functional connectivity: Acute effects, short-term homeostasis, and long-term plasticity. Phys Rev E, 99(4): p. 042407. 10.1103/PhysRevE.99.042407.
  65. Robinson, P.A. (2019). Physical brain connectomics. Phys Rev E, 99(1): p. 012421. 10.1103/PhysRevE.99.012421.
  66. Rosa, M.G.P., Soares, J.G.M., Chaplin, T.A., et al. (2019). Cortical afferents of Area 10 in cebus monkeys: Implications for the evolution of the frontal pole. Cereb Cortex, 29(4): p. 1473-1495. 10.1093/cercor/bhy044.
  67. Sah, P. (2019). Interneurons in the prefrontal cortex: A role in the genesis of anxiety in adolescence? Biol Psychiatry, 86: p. 650-651. 10.1016/j.biopsych.2019.07.026.
  68. Shine, J.M., Hearne, L.J., Breakspear, M., et al. (2019). The low-dimensional neural architecture of cognitive complexity is related to activity in medial thamamic nuclei. Neuron, 104(5): p. 849-855. 10.1016/j.neuron.2019.09.002.
  69. Smout, C., Tang, M., Garrido, M., et al. (2019). Attention promotes the neural encoding of prediction errors. PLOS Biol, 17(7): p. e3000368. 10.1371/journal.pbio.2006812.
  70. Sneve, M.H., Grydeland, H., Rosa, M.G.P., et al. (2019). High-expanding regions in primate cortical brain evolution support supramodal cognitive flexibility. Cereb Cortex, 29(9). 10.1093/cercor/bhy268.
  71. Soloveva, M.V., Jamadar, S.D., Velakoulis, D., et al. (2019). Brain compensation during visuospatial working memory in premanifest Huntington’s disease. Neuropsychologia, 136: p. e107262. 10.1016/j.neuropsychologia.2019.107262.
  72. Spencer, M., Kameneva, T., Grayden, D.B., et al. (2019). Global activity shaping for a retinal implant. J Neural Eng, 16(2): p. e026008. 10.1088/1741-2552/aaf071.
  73. Tong, W., Stamp, M., Apollo, M.V., et al. (2019). Improved visual acuity using a retinal implant and an optimised stimulation strategy. J Neural Eng, 17(1): p. e016018. 10.1088/1741-2552/ab5299.
  74. Travis, S., Dux, P., Mattingley, J. (2019). Neural correlates of goal-directed enhancement and suppression of visual stimuli in the absence of conscious perception. Atten Percept Psychophys, 81(5): p. 1346-1364. 10.3758/s13414-018-01641-z.
  75. van der Groen, O., Mattingley, J., Wenderoth, N. (2019). Altering brain dynamics with transcranial random noise stimulation. Sci Rep, 9: p. 4029. 10.1038/s41598-019-40335-w.
  76. van Heusden, E., Harris, A., Garrido, M., et al. (2019). Predictive coding of visual motion in both monocular and binocular human visual processing. J Vis, 19(1): p. 3. 10.1167/19.1.3.
  77. Ward, P.G.D., Harding, I.H., Close, T.G., et al. (2019). Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia. Mov Dis, 34(3): p. 335-343. 10.1002/mds.27606.
  78. Wittenhagen, L., Mattingley, J. (2019). Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task. Cortex, 117: p. 217-227. 10.1016/j.cortex.2019.03.014.
  79. Wittenhagen, L., Mattingley, J. (2019). Attentional modulation of neural responses to illusory shapes: Evidence from steady-state and evoked visual potentials. Neuropsychologia, 125: p. 70-80. 10.1016/j.neuropsychologia.2019.01.017.
  80. Wong, Y.T., Feleppa, T., Mohan, A., et al. (2019). CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis. J Neural Eng, 16(2): p. e026025. 10.1088/1741-2552/ab021b.
  81. Wong, Y.T., Hagan, M.A., Hadjidimitrakis, K., et al. (2019). Mixed spatial and movement representations in the primate posterior parietal cortex. Front Neural Circuit, 13: p. 15. 10.3389/fncir.2019.00015.
  82. Yang, D.P., Robinson, P.A. (2019). Unified analysis of global and focal aspects of absence epilepsy via neural field theory of corticothalamic system. Phys Rev E, 100(3): p. 032405. 10.1101/339366
  83. Yong, J., Liang, Y., Yang, Y., et al. (2019). Fully solution-processed transparent artificial neural network using drop-on-demand electrohydrodynamic printing. ACS Appl Mater Interfaces, 11: p. 17521-17530. 10.1021/acsami.9b02465.
  84. Yunzab, M., Cloherty, S.L., Ibbotson, M.R. (2019). Comparison of contrast-dependent phase-sensitivity in primary visual cortex of mouse, cat and macaque. Neuroreport, 30(14): p. 960-965. 10.1097/WNR.0000000000001307.
  85. Yunzab, M., Meffin, H., Cloherty, S.L., et al. (2019). Synaptic basis for contrast-dependent shift in functional identity in mouse V1. eNeuro, 6(2): p. e0480-18.2019. 10.1523/ENEURO.0480-18.2019.
  86. Zarei, S.A., Sheibani, V., Mansouri, F.A. (2019). Interaction of music and emotional stimuli in modulating working memory in macaque monkeys. Am J Primatol, 81(7): p. e22999. 10.1002/ajp.22999.
  87. Zarei, S.A., Sheibani, V., Tomaz, C., et al. (2019). The effects of oxytocin on primates’ working memory depend on the emotional valence of contextual factors. Behav Brain Res, 362: p. 82-89. 10.1016/j.bbr.2018.12.050.
  88. Zavitz, E., Price, N.S.C. (2019). Understanding sensory information processing through simultaneous multi-area population recordings. Front Neural Circuit, 12: p. e115. 10.3389/fncir.2018.00115.
  89. Zavitz, E., Price, N.S.C. (2019). Weighting neurons by selectivity produces near-optimal population codes. J Neurophysiol, 121(5): p. 1924-1937. 10.1152/jn.00504.2018.
  90. Zavitz, E., Yu, H.-H., Rosa, M.G.P., et al. (2019). Correlated variability in the neurons with the strongest tuning improves direction coding. Cereb Cortex, 29(2): p. 615-626. 10.1093/cercor/bhx344.
  91. Zeater, N., Buzas, P., Dreher, B., et al. (2019). Projections of three subcortical visual centers to marmoset lateral geniculate nucleus. J Comp Neurol, 527(3): p. 535-545. 10.1002/cne.24390.
  92. Zhu, S., Allitt, B., Samuel, A., et al. (2019). Distributed representation of vocalization pitch in marmoset primary auditory cortex. Eur J Neurosci, 49(2): p. 179-198. 10.1111/ejn.14204.
  93. Zhu, S., Allitt, B., Samuel, A., et al. (2019). Sensitivity to vocalization pitch in the caudal auditory cortex of the marmoset: Comparison of core and belt areas. Front Syst Neurosci, 13: p. e5. 10.3389/fnsys.2019.00005.